APRIL 1981

‘ - —

el I

VOLUME ONE No. 11

The Software Evaluation Groupi Condor
BASIC Comparisons: SBASIC, Part 2

A Review of PMATE

T T T gy
oraled

i

P S e e——

Volume 1 No. 11 April

Editor-in—-Chief: Harris Landgarten
Managing Editor: Jane Mellin

CONTENTS PAGE
Opinion Editorial Comments 2
Response 2
Features A Review of PMATE
by Harris Landgarten 3
The Software Evaluation Group:
Condor
by Ed Paulette and Steve Patchen 6
BASIC Comparisons, SBASIC Version 5.3
Part 2
by Bill Burton 13
The CP/M Users Group CPMUG News 5
Product Status New Products 16
New Versions 17
Bugs and Bug Fixes 18
Version List 20
Miscellaneous Tips and Techniques 15
Readme 12
Coming 18

*SBASIC is a trademark of Topaz Programming
PMATE is a trademark of Phoenix Associates, Ltd.

* CP/M is a trademark of Digital Research, Inc. The CP/M Users Group is
x ot affiliated with with Digital Research, Inc.

Copyright @ 1981 Lifelines Publishing Corporation

Lifelines, Volume |, Number Eleven. Published monthly. The single copy price is $2.50
domestically, including the U.S., Canada, and Mexico. The single issue price for copies
sent to all other countries is $3.60. A one year's (12 issues) subscription is priced at
$18.00, when destined for the U.S., Canada or Mexico, $40 when destined for any other
country. All checks should be made payable to Lifelines Publishing Corporation.
Foreign checks must be in U.S. dollars, drawn on a U.S. bank; checks, money orders, VISA
and MasterCard are acceptable. All orders must be prepaids Lifelines is published by
Lifelines Publishing Corp., 1651 Third Aves, New York, N.Y. 10028, Telephone: 212-722-
1700. Please send all correspondence to the publisher at the above address. Postmaster,
send change of address to the above address. Application to mail at 2nd Class postage
rates is pending at New York, N.Y.

Editorial

Comments

Every so often, | like to examine
the current status of microcom-
puter software and report any
trends that | can see developing.
Most striking is the dramatic
increase in the number of high
quality programs entering the mar-
kete. | think this is attributable
in large part to the migration of
professional programmers into the
field of microcomputers. Evidence
of this trend can be seen in the
big computer facsimiles that have
been appearing lately. In some
cases subsets of traditional mini-
computer products, especially in
the area of database managers, are
being introduced. In other cases,
the micro versions are superior in
both features and speed. A perfect
example of this is PMATE, a new
text editor which is a fully video
version of TECO, an editor fami-
liar to users of DEC equipment.
This superiority is no surprise,
because single user micros are
more powerful than multi-tasking
minis from the standpoint of end
user performance. The movement of
professionals into microcomputer
software development is probably
due to the potentially large num-
bers of sales that can be made to
a software hungry public.

While assembly language still
reigns as the predominant medium
for writing low level applica-
tions, there is an emerging ten-
dency for programmers to use 'C'
or Pascal. Unfortunately, when
compared to assembly language sub-
stitutes, such programs can only
perform on state of the art equip-
ment without noticeable speed de-
gradation. Besides the obvious
advantages they offer in program-
ming and maintenance ease, these
languages are being used because
of their upward source code compa-
tibility to 16 bit machines run-
ning UNIXe This trend should build
and strengthen as sixteen bit
micros grow closer to becoming
accepted. Transportable source
code applications may very well be
the way in which the "chicken-egg"
situation so far hindering the
progress of the 16 bit evolution
will be resolved.s Sixteen bit
micros should cause an explosion

of features in today's programs.
Everyone will have to at least
partially rewrite his application,
and if there is any truth to the
adage, "If | were starting this
project over now I'd do things
much differently", we will benefit
from the result. This in combina-
tion with the vastly increased
facilities should have a marked
effect. Certainly, 8 bit machines
will be with us for several more
years, so there is little chance
of Z80/8080 assembly language pro-
grams becoming obsolete in the
near future.

One of the nicest side effects of
the current UNIX interest is the
exposure of the 'C' programming
language to the microcomputer pub-
lice 'C' is a wonderful language
whose limited popularity is due
mostly to a lack of publicity
compared to Pascal. Even partial
UNIX acceptance should change that
and give 'C' the chance it de-
serves. Any qualified enterprising
author should grasp this oppor-
tunity to write a 'C' tutorial. At
this time, other than the Kernigan
and Ritchie reference book and
internal Bell journals, nothing of
substance has been written about
'C's This language is too impor-
tant to be ignored.

Harris Landgarten

Response

March 5,
Dear Mr. Landgarten,
| would like to offer a few com-
ments on some issues being dis-
cussed in the software industry,
which have surfaced recently in
"Lifelines."

1981

First, two 'atta-boys' for your
editorial in the March isssue. |
understand the dilemma of the
producers of such software as DR's
PL/l and Microsoft's BASIC compil-
er, but the other side of the coin
is that we independent software
producers absolutely will not al-
low Digital Research, Microsoft,
et al, to be permanent partners in
our business. Hence, excellent
products, such as PL/I, will not
achieve the use (and the profit
to DR) that they deserve.

Second, as a sofftware producer, |

understand very well the economic
problems of software that can be
copieds Software piracy by un-
scrupulous dealers is certainly a
problem, and should be dealt with
as severely as possible. However,
with the present sophistication
(and prices) of good software, |
simply do not believe that hob-
byist copying and swapping is a
major problem. In most cases, the
hobbyist is not going to pay five
hundred dollars for a piece of
business oriented software. |[|f he
and a friend split the purchase,
the net result to the software
producer is one sale instead of
none, rather than one sale instead
of twoe This may well be unethi-
cal, immoral, unlawful, etc., but
it is a practical fact of life.

Meanwhile, the legitimate end user
is severely penalized in several
ways if the disk is made uncopya-
ble.

1) No backupe. Providing two
disks is not an answer, nor is an
exchange service to replace the
originale We all know that in a
practical working environment the
original is put away once a master
copy is made, then working copies
are made (and perhaps modified)
from the master copy. We also all
know, from hard experience, that
to do otherwise is to court
disastere.

2) |If a disk cannot be copied,
there is no way to arrange pro-
grams as desired, resulting in a
great deal of disk swapping to
accomplish anythinge For example,
| would not consider buying an
editor or text processor that |
could not put on my system disk so
as to have it conveniently availa-

ble. |f the system has a hard
disk, the situation becomes even
sillier! The retail dealer also

has a problem in putting together
a good smooth package for his
customer if he cannot arrange
programs from various sources on a
disk or disks as desired.

| really think that we should all
consider very carefully the rami-
fications of some of these so-
called 'solutions' to admittedly
real problems, lest we do a great
deal of damage to our infant in-
dustrye.

David Goodman
President, Piedmont Data Sciences

A Review of PMATE

PMATE is a new text editor that
was recently introduced by Phoen-
ix Software Associates for use on
8080/Z80 based microcomputers
with CP/M. |t is available from
Lifeboat Associates for $195.00.
My first reaction was a predict-
able "who needs another editor",
an attitude that was about to
abruptly change.

The first thing that strikes you
after firing up PMATE is the
presence of two cursors. The
"command line cursor", represent-
ed by the ' ' character, is al-
ways positioned on the second
line and marks the place where
characters will be entered when
the editor is in command mode.
The regular terminal cursor func-
tions as the "video cursor", and
is allowed to move freely about
the document being edited, which
is constantly displayed on the
screen. Characters can be +typed
directly into the document by
entering either "overtype" or
"insert" mode. No matter what
mode you are in however, the
video screen can always be mani-
pulated by using "instant com-
mands" which are activated by
sequences of control codes. There
are key sequences to move the
cursor by character, word, line
or page in either direction;
delete characters, words or
lines; to insert lines; to move
text; to recover items that have
been previously deleted; to shif+t
default case (for non-typewriter
style keyboards); to redraw and
reformat display; to enter either
of the three available modes; +to
edit the command string. The last
command mentioned is most useful.
Entry of a 'control ' causes the
command line to jump into the
video area so that it may be
edited like ordinary text. After
a command string has been cor-
rected, it can be returned to the
command line area for execution,
thereby eliminating the retyping
of long commands. The usefulness
of this feature will become appa-
rent after PMATE's command set
has been explained. |If you move
the cursor past the right edge of
the screen, the display scrolls
smoothly to the left, acting like

a frue window for documents ex-
ceeding 80 columnse. This is the
first microcomputer editor | have
used which implements horizontal
scrolling; a feature which |
predict will be added to many
existing text processing programs
in the near future.

PMATE divides available memory
intfo 11 buffers, a garbage stack,
and a permanent macro area. The
buffers are labeled "T" for the
regular text buffer and 0-9 for
the auxiliary buffers. The gar-
bage stack holds deleted items,
(characters, lines or tfext
blocks) in a first in last out
organization, discarding the old-
est items when memory is exhaust-
eds The instant command 'control
R' pops the top of the garbage
stack into the current video
buffer, thus restoring the last
item deleted. This is used +to
correct accidental erasures and
to perform simple text moves.
More complex text movement uti-
lizes buffer 0, which is also
called the special buffer. The
'control T' instant command
'Tags' the current cursor posi-
tion. A subsequent 'control E'
command will cause all text bet-
ween the current cursor position
and the 'Tagged' position to be
moved into the special buffer. A
'control Z' will then retrieve
the special buffer and deposit
its contents in the document. The
marked text can be used repeated-
ly, since the special buffer is
only copied, not moved.

More sophisticated editing can be
accomplished in the command mode.
PMATE command strings vary in
complexity from simple cursor
movement or string searches to
intfricate program-like command
strings containing logical tests
and iterative sequences. All com-
mand strings are terminated with
two 'esc' characters which echo
as dollar signse After a command
has been completed, it may be
executed again by merely hitting
another 'esc's PMATE's command
set makes up a mini programming
language. Along with the usual
cursor movement and delete com-
mands, are a variety of sequence
control, 1/0, file control, =nc

buffer control commands, as well
as 10 numeric variables, a user
number stack, numeric expres-
sions, and constants which pro-
vide access to all pertinent
information about the current
state of the editor. These facil-
ities give the user the power to
add commands to the editor by
writing appropriate macro pro-
grams and then storing them in
the permanent macro library buf-
fer. The command Cblah$blew$ will
change all occurrences of "blah"
in the text buffer to "blew". |+t
is often desirable to search and
replace interactively, stopping
after each occurrence of +the
search string and replacing it
only if a positive response is
given. A macro to accomplish this
task follows:

2QA

[
S~AAS
GType escape to replace$
@K=27[-C~AA$~AB]

]

The first line sets the number of
string arguments required from
the calling command to two. The
next line searches for the first
argument. The 'G' command then
gives a prompt, displays the text
buffer with the cursor pointing
past the next occurrence of the
found string, and waits for a
response. Since '@K' evaluates +to
the ASCI| value of the key hit
following a 'G' command, the
'@K=27"'" condition will only be
true if the user responds with an
escape, thereby causing the
bracketed replacement command to
execute. The entire process re-
peats until either the string is
not found or the user hits 'con-
trol C' which will abort any
runaway macro. |f this macro were
labeled 'R' and stored as a per-
manent macro it would be invoked
by the command string
'‘Rblah$blew$'s Macros which are
less general in nature can be
developed in one of the auxiliary
buffers and executed directly
from there with a command of the
form '.b' where b is the appro-
priate buffer number. A 'Trace
and Break Point' feature is in-
cluded for debugging formidable
macro programse. The manual states
that the materials are here even

to even construct a monitor pro-
gram, a boast which | don't
doubte.

Another command feature which |
liked was the use of the '#'
character. When used in place of
a numeric command argument, '#'
evaluates to the number of items
(either characters, words, or

lines) between the 'Tagged' po-
sition and the current video
cursore. In this way large blocks

of text can be deleted or moved
by simply 'Tagging' one end,
moving the video cursor to the
other end, and issuing a command
with '#' as the numeric argument
(ee«ge #B2M to move the marked
block to buffer 2).

A large assortment of file com-
mands are included in PMATE.
Paging large files though the 'T'
buffer, file reading and writing,
and directory maintenance are all
provided for. In addition, the
'XD' command will write a dupli-
cate copy of PMATE, in its cur-
rent state, to disk, allowing the
user to set custom defaults or
add permanent macros and then
create a new editor with those
features.

Those with a real yen for custom-
ization will appreciate that al-
most all of PMATE's features are
user redefinable. All instant
commands can be easily changed to
match the editor you're familiar
withe An instant command sequence
can contain any number of ASCI|
codes, allowing the use of ter-
minal function keys which produce
multiple characters. Many other
editor characteristics are also
user selectable. The exact effect
of cursor movement commands can
be selected on a per mode basis.
For example, a cursor down com-
mand in overtype mode may move
the cursor straight down, while
the same command in insert mode
may move the cursor to the begin-
ning of the next line. Screen
updates can proceed either from
top down. or from the current
cursor position oute The number
of lines the cursor is allowed to
wander fr\‘om the center of the
screen can be set, as can the
number of lines scrolled in a
multiple line move command. Those
with a basic knowledge of as-

sembly language can implement new
instant commands by assigning
keystroke sequences to automati-
cally execute stored user macros.
Keystrokes can be redefined to
mimic others so that inconven-
iently located keys on your key-
board can be logically moved. A
hook is provided for you to in-
sert a command sequence which is
executed before command mode is
entered. This feature allows you
to implement an auto-updating
status line or to define a spe-
cial purpose text processor which
runs without user intervention.
The latter possibility could be
used for a data conversion utili-
ty or perhaps to convert between
different internal editor for-
mats. Clearly, your imagination
and ingenuity are the limiting
factors. PMATE can almost be
thought of as a special purpose
language with which to write the
editor you want.

A limited text formatting feature
is provided along with the abili-
ty to output directly from the
screen to a printer. | found the
text formatting to be of little
use. The printer control is handy
for getting quick listings of
program segments. To use PMATE
for any but the most primitive of
word processing tasks would be
inconvenient or impossible. PMATE
is definitely at its best when
working on programs or data
filese

Comprehensive documentation is
provided by the manual. |t begins
with a thorough tutorial, con-
tinues with a discussion of macro
programming followed by a section
on customization, and concludes
with a summary of PMATE's com-
mandse Many detailed examples of
macros are provided. In addition,
the section about customization
goes into sufficient detail for
the moderately experienced com-
puter user to follow without
confusion. While no index or
table of contents is provided,
the command summary should suf-
fice for most queries by semi-
experienced users. A quick re-
ference card would also be a
useful addition since no on-
screen help system is provided.

PMATE will work with any con-

ceivable serial terminal or me-
mory mapped video display. Fa-
cilities for handling all excep-
tional terminals | have ever seen
are provideds The flexible way in
which the installer may inter-
sperse delays among the cursor
commands should serve as a model
to others writing terminal depen-
dent software.

I found only two shortcomings in
this almost-perfect editor. The
first is that the user must
manually control the flow of a
large file though the editor by
using various file in and out
commands as memory becomes |i-
miteds Once a section has been
written to the output file, it
cannot be retrieved until the
entire file has been flushed
through and the edit is reini-
tiateds This can be a real incon-
venience when dealing with very
large programs or text files. |
am fold that the next revision of
PMATE, due in three or four
months, will have full bidirec-
tional disk to memory automatic
scrollinge In the meantime, al-
though PMATE will run in less
than 32K, large memory machines
will allow the processing of
bigger files without restrictive
file manipulationse The other
shortcoming (some may call it a
feature), which is apparently
common to all of Phoenix's edi-
tors, is the fact that PMATE zaps
all of the NULLS in the file it
is editing. Although most program
sources and ASCI| data files do
not contain NULLS, there is one
notable exception. Microsoft BA-
SIC source files indicate a phy-
sical new line that is not the
end of a statement with the se-
quence LF, CR, NULL. Therefore, |
do not recommend the use of PMATE
on Microsoft BASIC files.

The more difficult the editing
task and the more skilled the
user, the more valuable PMATE be-
comes. | have found PMATE to be
especially convenient for writing
programs in structured languages
such as C, Pascal and PL/l. | can
develop the main program in the
primary buffer while writing pro-
cedures in the auxiliary buffers.
If | want to refer to another
piece of code, it can be read
into a spare buffer, inspected,
dissected, and moved or discarded

without affecting any of +the
other text being edited, as long
as memory permits. Furthermore,
the ability to define default
tabs of three or four spaces, and
the horizontal scrolling feature,
help in managing programs with
many levels of indentation. The
hours saved on difficult editing
jobs (such as the conversion of a
program to a different implemen-
tation of the same language) have
made PMATE one of my favorite
software tools. | f your editing
Jjobs are anything like mine, |
think PMATE will become one of
your favorites too.

Harris Landgarten

VOLUME 49 IS AVAILABLE

See next month for more detail.
This month, we have an exciting
new feature The CPMUG BUG promp-
ted by a letter from Rich Leary
of Phoenixville, Pas re "DI" on
Volume 40. Rich writes that:

Apparently, the ONLY means of
exiting the directory read loop
is by detection of an OE5H in
both the 1st and 2nd bytes of a
directory entry. Sam Singer's
comments state that he reads
"groups" O and 1; in fact, he
sets "group" to O and then incre-
ments "sector" to read successive
directory records. NO test seems
to have been made to ensure that
only 64 directory entries (ie: 16
records or 2 groups) are read. |f
the directory is or has been full
on a diskette, the program will
not exit the read loop (this may
be why Sam says that the output
is sometimes "scrambled").

| cannot re-assemble Sam's pro-
gram as | do not have MAC. | did
verify the changes listed below
by inserting a patch and testing
them. They allowed me to use the
program with disks that previous-
ly could not be used.

Here are the changes:

DIR6: LHLD OUTB
XCHG
LHLD INB
MV A,OESH
CMP M

datasouth announces...

THE TOTAL
PRINTER PACKAGE!

The DS180 matrix printer provides the total package of
performance features and reliability required for applica-
tions such as CRT slave copy, remote terminal networks
and small to mid-range systems. Not a “hobby-grade”
printer, the DS180 is a real workhorse designed to
handle your most demanding printer requirements. And
pricing on the DS180 is hundreds of dollars below
competitive units.

High Speed Printing—Bidirectional, logic-seeking
printing at 180 cps offers throughput of over 200 1pm
on average text. A 9-wire printhead life-tested at 650
million characters generates a 9x7 matrix with true
lower case descenders and underlining.

Non-volatile Format Retention—a unique programming
keypad featuring a non-volatile memory allows the user
to configure the DS180 for virtually any application. Top
of form, horizontal and vertical tabs, perforation skip-
over, communications parameters and many other
features my be programmed and stored from the key-
pad. When your system is powered down, the format is
retained in memory. The DS180 even remembers the

line where you stopped printing. There is no need to
reset the top of form, margins, baud rate, etc...it's all
stored in the memory. If you need to reconfigure for
another application, simply load a new format into

the memory.

Communications Versatility —The DS180 offers three
interfaces including RS232, current loop and 8-bit
parallel. Baud rates from 110-9600 may be selected. A
1K buffer and X-on, X-off handshaking ensure

optimum throughput.

Forms Handling Flexibility —Adjustable tractors accom-
modate forms from 3"-15". The adjustable head can
print 6-part forms crisply and clearly making the DS180
ideal for printing multipart invoices and shipping docu-
ments. Forms can be fed from the front or the bottom.

If you would like more information on how the DS180’s
low-cost total printer package can fill your application,
give us a call at Datasouth. The DS180 is available for
30-day delivery from our sales/service distributors
throughout the U.S.

datasoutn

computer corporation

4740 Dwight Evans Road e Charlotte, North Carolina 26210 « 704/523-8500

>>>> Delete the following lines:

INZ DIR8
INX H
CMP M
Jz SORT
>>>> and change the JMP to a JZ:
JMP DIR12

The last instruction in the DIR12

routine is JMP DIR4 to read ano-
ther block from the directory.
Delete this JMP and insert:

CPI 8 ;see if 8

JINZ DIR4 ;loop if not

XRA A ;clear A

STA S ;and then sector
LDA G ;get group

INR A sbump it

STA G ;save it

CPI 2 ;see if too big
JINZ DIR4 ;loop if not

JMP SORT ;else done

Note: you only have 3 bytes (the

JMP instruction) free at this
location (DIR12) if you are going
to hot patch the code. You
should put a JMP INSERT at that
point (in place of JMP SORT) and
use the DDT "A" command to put
the INSERT routine at the end.

| would like to thank Rich for
sending in this patché, Sam Sin-
ger's program is quite useful and
| hope you can use ‘this data. We
welcome your contributionse.
Please send them to CPMUG, 1651
3rd Ave., NYC NY 10028.

the sofrware evaluation Group: CondoR

by ed paulette & steve Parc

Name of database package:
CONDOR SERIES 20/DBMS LEVEL | & I
Author: CONDOR COMPUTER CORPORAT ION
3989 RESEARCH PARK DR.
ANN ARBOR, MICHIGAN 48104

Series 20 from Condor Computer Corporation is cur-

rently available in two editions, Level | and Level
Il Both Level | and Level Il utilize the "Rela-
tional Model" - the same one used in IBM's recently

released SQL system (known before release as SYSTEM
R)e This is the first system we have evaluated
which actually follows a previously described mo-
dels One of the major advantages of this system is
that it has a consistent underlying conceptual
structure. Of the three commonly described models
for database systems the Relational is the simplest
and at the same time probably the most elegant. In
database circles it is wusually discussed as
potentially the most "user friendly".

While both Condor database systems follow the rela-
tional model, only Level Il can be said to be
"fully" relational. This is almost academic nit-
picking, since the less expensive Level | includes
a very well-chosen set of commands which allow
the implementation of almost any necessary set of
many-to-many relationships among files.

I+'s not possible to describe the nature of the
relational data model in any significant detail in
this review, so | encourage consultation of James
Martin's (almost classic) introductory text on
database systems, Principles of Database Manage-
ment, for more information. C.J. Dafte's Intro-
duction to Database Management Systems goes into
more detail on relational systems. Both are re-
ferenced in the second article in this series.

Using the relational data model, data is viewed by
a user as falling into two dimensional tables in
which the columns correspond to fields and each row
corresponds to a separate record in conventional
systems. Each of these tables is called a "rela-
tion", because it defines the relationship between
the different data values within a record. In most
writing about relational systems, a record is
termed a "tuple" and each column is called an
"attribute". These terms are part of the elegant
(but unnecessary) mathematics underlying the sys-
tem, "tuple"="row"="record" and "attri-
bute"="column"="field".

Under Series 20 a "relation" is called a "dataset".
A collection of one or more datasets logically
describing your data structure would be called a
"database".

If all we could do was implement and operate on a
single datafile at a time, we would have nothing
exceptional (although this is the extent of the

Hen

capabilities of some of the least expensive '"data-
base management system" packages). A relational
system goes well beyond this, allowing one to ope-
rate on one or more relations to produce entirely
new relations!

A trivial example of producing a new relation is
the SELECTion of a subset of the records in a
dataset, producing a new relation which contains
only those records meeting specified criteria.
Less trivially, one can specify that only certain
fields be included in a result dataset (the PROJECT
operation), and further, that this newly-created
dataset be "JOINed" with another dataset, using
some arbitrarily chosen set of matching fields
(called "KEYS™). And all of this can be done
interactively, on the fly, without having specified
that any of those operations would have to be
performed before they were actually needed. (In
Series 20 matching fields must have the same name.
This limitation may be removed in the future.)

The ability to directly, interactively specify such
powerful operations after the entire database has
already been defined, makes a relational database
system very attractive for many systems where a
more rigid database is impracticale For new appli-
cations, for ill-defined applications, for applica-
tions where the database structure is volatile or
where the demands of users for information change
rapidly, the relational model can make the dif-
ference between success and failure. Because each
relation (dataset) is independently specified, it's
possible to implement even a very complex database
a little at a time, so it's also modular.

Focusing now on the particulars of CONDOR's imple-
mentation of the relational model:

Installation goes quite quickly = if your terminal
is compatibles One of the authors has used the
package on a TRS-80 Model Il with LB CP/M, and an
ALTOS ACS8000-5 multi-user system with an IBM 3101
under both CP/M 2.2 and MP/M 1.12. (Only Level |II
works under MP/M.) In each case, the system instal-
led quickly and worked smoothly.

After loading the database command processor (which
remains resident thereafter) and identifying your
terminal type to the system, one can begin defini-
tion of a new dataset by simply issuing the
"FORMAT" command. One then "draws" the desired
data entry screen, using control keys and typing
the text one wants to appear during data entry.
Field names are specified by typing them on the
screen surrounded by brackets, "[" and "I".

One is next automatically prompted for definitions
of the fields named on the screen. Extensive de-
faults are provided. (For example, the system will
count the number of dashes typed on the data entry
screen next to a given field name.) Maximum, mini-

mum and default values can be specified to provide
minimal data validation.

As soon as this step is complete, one can immedi-
ately enter data to the dataset, refrieve the data
and relate it to other already existing data. For
seven or eight fields, the entire process can easi-
ly take less than fifteen minutes.

Level | and Level || are completely compatible;
databases established under one of the two can be
read and accessed by the other (within the capabi-
lities of each). Level | includes all the basic
utilities and operations which allow one to define
and modify the definition of datasets: to enter,
display, modify and sort data in the datasets; to
select subsets of datasets; to compare two datasets
("RESTRICT" in relational terminology) and isolate
the matching or non-matching records; to list the
data and to read and write the data from external
filese To these very extensive capabilities Level
Il adds the powerful JOIN and PROJECT operations as
well as several very useful utilitiess The Level II
INDEX command allows the selection and sorting of
indices to data records without actually writing
out a new copy of the selected records. Subsets se-
lected using the INDEX facility can be accessed by
the other commands in Series 20.

One small departure in the Condor package from the
standard relational features is that Condor does
not currently support weeding, the elimination of
duplicate tuples. This feature is most important
when a relation has been created by a series of
Joins and projects, so that it contains many dupli-
cate entries. As with many of the small problems we
noted in this package, Condor has told us they will
correct this one with a weeding option (in conjunc-
tion with the sort function). This feature will be
an update to both Levels | and I|l.

Level Il also adds compatibility with MP/M and the
ability to automatically initiate a CP/M submit
file upon leaving the Database system, allowing
access 1o non-DBMS programs requiring the entire
TPA and CCP address space.

With minor differences, Level | and Level || appear
almost to be powerful extensions to CP/M, MP/M or
CDOS. CP/M utilities can be executed directly, as
can most user written programs which don't depend
on specific locations in CP/M or access to more
than 32K of user memory. (If more is needed both
Level | and Level || can be "unhooked" then re-
loaded from a submit file.) When a series of com-
mands is to be regularly executed, those commands
can be stored in a CP/M textfile and the usual CP/M
facility used to execute them. Level || allows
interrupted batch files to be restarted (cautious-
ly!) in case of power failures or other catas-
trophes.

A general ledger comes with the system as an exam-
ple application and is used in the manual fo fami-
liarize the user with the various operations in the
system. As a test application, we developed a check

entry system in addition to this ledger. It is one
of the evaluation problems, and one of +the au-
thors desperately needed an automated bookkeeping
system with a checking account balancing acte.

The other problems have been successfully imple-
mented for production databases exceeding 600Kb
(for one of the authors' clients), but they will
not be discussed here except to note that they can
be performed conveniently with this system.

Series 20 is the first true database system that we
have reviewed so far. |ts price reflects this sta-
ture, however. It is not without problems, unfor-
tunately. First, we will discuss the system and the
problem setup and then we will point out some of
the good features and some of the inconvenient ones
in using this system.

The accompanying illustrations are examples of the
printed form of the basic parts of the Condor
Database System. A menu selection feature is avail-
able (see Figure 1), but all commands can be en-
tered interactively. The menu can execute any valid
CP/M command but its most common use is to execute
the SUBMIT command with a batch processing file.
The batch files are, in a minimal sense, programs.
They can be created with any text editor and given
a name with a ".SUB" extension. The menu itself is
likewise created with a text editor and given an
extension of "HLP". |t is loaded with the command
"HELP name". The part of each line in brackets is
not displayed on the screen but is executed as a
CP/M command if that line is selected. In my exam-
ple | have changed the SUBMIT to DO to save typing
in interactive mode.

Figure 2 is a listing of the data dictionary in
tabular format. It can also be printed on the in-
dividual screen forms used to enter each dataset
into the data dictionary. The last four lines are
the datasets added to implement the checks entry
system for the ledger.

Figures 3 and 4 are the screen forms for the checks
entry datasets. They are followed in Figures 5 and
6 by the corresponding data definitions. The field
numbers on the forms are found by scanning from
left to right and from top to bottom. Enough under-
lines must be supplied for each entry on the form
to accept the number of characters required for the
"MAX" entry specified for each field. The data
types are "A" for alpha characters, "N" for integer
numbers, "AN" for alpha or numeric,"DATE" for dates
entered in the "mm/dd/yy" format and stored as a
Julian date starting from 1/1/00. The "MIN"' & "MAX"
ignore the sign of the number when defining the
number of bytes required to store it, but the
ranges specified are enforced during data entry.

The last illustration, Figure 7, is the batch sub-
mit file for the checks entry. As we discuss the
strategy for the checks entry we will also describe
some of the commands of the Condor system. Each
line in the batch file is a valid CP/M command
line« The first word on the line is a DBMS command

which is loaded and executed as an independent
program. |f the DBMS operating system has not been
loaded already, the command terminates with an
error message telling the user of the oversight.
The start-up procedure can also be submitted as a
batch. The DBMS operating system loads below the
CCP for a 48K system; it does not load any higher
in memory if a larger CP/M system is used.

Description of the Checkbook problem:

After the checks and deposits are entered using the
data entry routine "ENTER", they are sorted by the
ledger balance account numbers. The result is com-
pared to the general ledger to produce a list of
entries to non-existent accounts. The "TITLE" com-
mand sends a form feed to the printer and prints
the specified title at the top of every page until
a different title is specified. The check entries
are compared to the bank account balance records to
insure the checks and deposits are being made to
existing bank accounts. This result is also printed
and moved to a temporary file. The comparison is
made again to select the good entries. The tempora-
ry file is also compared to the ledger to select
entries with good account numbers. The result again
is moved to the temporary file and is appended to
the audit file. The result is printed and posted to
the ledger.

Next the debit and credit fields in the balance
records are zeroed and the temporary file is posted
to the bank accounts. In order to post the bank
accounts to the ledger the credit and debit fields
have to be exchanged so they will balance with the
previously posted individual entries. The debit and
credit are moved to the checks and deposits fields,
and the checkbook balance is updated; then the
debit and credit are exchanged, while reloading, to
the debit and credit fields. Note the unnecessary
"+0"s required by the syntax of the system. After
the bank accounts are posted, the year to date
amounts in the ledger are updated. In order to
update the balance proof the unprocessed checks are
selected from the check audit file and posted to
the debit and credit fieldse Then useful informa-
tion is printed.

General Comments:

You will notice that the checks entry procedure
follows a very "straight line" strategy. As those
of you who use CP/M's SUBMIT facility are well
aware, no mechanism is provided to change the flow
of control within the SUBMIT file. In some situa-
tions this is a considerable inconvenience. Given
the non-procedural nature of the command language
provided by Series 20, this 1is not such an
inconvenience as it might otherwise have been. In
the current example, however, note that there is no
method for determining whether errors in the input
data were corrected; nor is it possible to stop the
procedure in order to allow the operator to make
corrections. You must either provide an error
correction step or require that the operator watch
the processing and attempt to halt the process in
midstream by holding down CONTROL-C until the batch

is interrupted. (Control-C will not interrupt the
batch under many implementations of CP/M.

If a method were provided to check a dataset for
the presence or absence of data records and condi-
tionally to skip the next SUBMIT file command or
terminate batch processing, one could implement it
much more intelligently. Since the SUBMIT facility
is a well-known CP/M feature and Series 20 commands
are «.COM files, implementation of this facility
might be an early contribution by some public-spi-
rited member of a Series 20 users group.

The print function is currently very restrictive,
but is due for expansion. The examples in this
article illustrate what is currently available as a
format. (except for the "STAX" function which
prints out a fotal, an average, the minimum and
maximum of a selected field for all records in the
dataset.) Promised extensions to the LIST, PRINT,
and STAX commands for both Levels | and || will
provide selection of records to be printed, the
specification of fields to be counted, totaled,
averaged, etc and multiple levels of control breaks
(e.ge for subtotaling)e A Report Writer feature has
also been promised for release in the near future
as part of Level ||, but no details were available
regarding its capabilities.

A significant current limitation is the inability
of Series 20 to sort files larger than 128K. Condor
has promised that the sort capacity will be signi-
ficantly increased or the problem eliminated in the
near future. A new feature available in Level ||
(but not in the version tested), is the ability to
generate indices of records in a manner similar to
the generation of a subset by the SELECT command.
Since one can sort these indices and use them +to
access the files for subsequent processing by other
commands, the sort file size limitation should be
considerably lessened for Level || users. The
INDEX command is obviously useful in many contexts.

Interactive examination and updating of information
is easy in the Condor system. The database in-
tegrity is well maintained and most losses involve
only the most recent entry. ("Hard" system crashes
due to static or power failures have occasionally
caused the loss of all data entered since the file
was closed.)

Review Summary

Good points for use of this package:

This is a very flexible package which closely fol-
lows the relational model in the capabilities it
provides and the view it presents to the user. |t
has proven quite reliable in production use with
databases of substantial size (up to 600Kb). It can
handle very complex data base structures in a modu-
lar fashion without overwhelming the user. With
care it can be used in a multi-user environment
(MP/M). The operations it provides have been tho-
roughly studied by database theorists and several
texts for use in addition to the documentation
provided by Condor Computer are available de-

scribing general strategies.

It is very easy to learn to use and works very
quickly considering its generality and flexibility.

Bad points for use of this package:

Series 20 is among the more costly packages availa-
ble which puts it out of the price range of most
persons personally financing their software habits.
As a business package, it suffers most from lack of
a report generation package of the caliber of that
provided with CBS and Selector IV and from the
inability of the SORT command to sort files greater
than 128K. (Larger files can be segmented and re-
combined using the SELECT command.)

The SUBMIT file facility as currently implemented
can make certain types of tasks tricky to program.
(See comments above.) Data validation during data
entry is quite limited (somewhat more so than CBS).
It would be very desirable to be able +to enforce
the uniqueness of primary record keys, and to allow
only specific values in certain fields where data
is entered in coded form.

Recommendations and potential application:

This system is especially well suited to use by
novices and where requirements are likely to vary
quickly over time. Because it can handle very com-
plex databases, it should also find utility in
situations where flexible access is of paramount
importance.

Since it is possible to move easily from the cur-
rently available Level | to the coming Level |1
(both will be supported indefinitely), users who
are uncertain can begin with one and shift to the
later one should the utility of the additional com-
mands become apparent. Some of the newest features
of Level || will make it a very attractive package
indeed.

Ed Paulette is currently using Level |l in con-
Junction with a similar relational database manage-
ment system on a time-sharing system in which data

entry, and editing are performed locally and more
general processing is performed centrally. The
general nature of the relational model allows the

implementation of equivalent databases on both
machines. Connect time is thus minimized, and addi-

tional software development was minimal.
References:
See the introductory articles for details on ter-

minology and the evaluation format used. These
articles appear in the following issues of Life-
lines' Volume |: No. 4, No. 5, No. 6, and No. 7.

*Neifher of these database systems would run on my
system without modification. They did not like
talking to my Digital Equipment VT52 terminal. The
terminal does not have line wrap around. The soft-
ware does not have carriage returns or line feeds
in the screen forms. | was able to get the Level |
system working by inserting CRLFs into each form at
the ends of the lines in place of the last two

characters. This fix was defeated by the Level ||
system. Harris and Steve are working on an article
dealing with battles over terminal interfacing. We
hope to make useful recommendations to both authors
and users. (SP)

Editor's note: The authors of Condor have informed
me that they are planning to offer the source of
the terminal drivers as an option for those with
difficult to implement terminals (many terminals
will fit this description). This should be at least
a partial solution for those with a knowledge of
assembly language.

Ed Paulette is Associate Executive Director of The
Michigan Evaluation Resource Center, where he is
engaged in the implementation and support of finan-
cial applications and client data base systems for
human service organizations. His address at The
Center is 338 South State St., Ann Arbor, M| 48104.

Steve Patchen is a data engineer who provides hard-
ware and software support for small business com-
puter users in the southeastern Michigan area. His
address is: LAB Data Systems, 255 Chippewa, Pon-
tiac, M| 48053.

GENERAL LEDGER ACCOUNTING SYSTEM
SELECT ONE OF THE FOLLOWING OPTIONS

ENTER CHECKS AND DEPOSITS [DO B:CHECKSINI
BALANCE CHECKBOOK [DO B:BALCHK]
INPUT JOURNAL ENTRIES [DO B:JOURNIN]
JOURNAL TRIAL BALANCE [DO B:TRIALBI
POST GENERAL LEDGER [DO B:POSTGL]
UPDATE GENERAL LEDGER [DO B:UPGLEDG]
INPUT CHART OF ACCOUNTS [DO B:ACCNTS]
Figure 1

UL
o‘o‘o.»:nmnmnmummoomummommummm pill

DATA DICTIONARY . I

Definition .HH
GLEDGER
GLEDGER
JOURNAL
JOURNAL
$$.DEF
CHECKS
BALANCE

Form
GLEDGER
GLEDGER
JOURNAL
JOURNAL
$$.FRM
CHECKS
BALANCE

Data

GLEDGER
GLTEMP
JOURNAL
JOURAUDT
$$.DAT
CHECKS
BALANCE

Title
GLEDGER
GLTEMP
JOURNAL

JOURAUDT
RESULT

CHECKS
BALANCE
| CHKTEMP CHKTEMP CHECKS CHECKS
CHECKAUD CHECKAUD CHECKS CHECKS

L
LA OO L ECCCCCCCO A RERRECCCCUGAAL
A

?fGENERAL LEDGER ACCOUNTING SYSTEM
RN CHECKS AND DEPOSITS

to debiT/credi+)i

2

i

I

=

- :
T NAME (Bankg
o account name)i
" DATE (Date check or de-3
o posit)§
s CHECKNO : (Check number or§
Z;, blank for deposi+s)j
wDEBIT (Amt. check orj
s blank for deposits)¥
e CREDIT (Amt. deposit) ﬁ
ACCOUNT (Ledger accountX

:

X

LS

“ DESCRIPTION :

_(Flag to track pro-;
cessing, leave blank)y;
Figure 3 :

% PROCESSED :

GENERAL LEDGER ACCOUNTING SYSTEM
BALANCE RECORD

ACCOUNT (Bank ledger

account number)

(Bank

account name)

(Accounting month)

(Date of last

NAME :

MONTH :
DATE

statement)
STATEMENT (Statement
balance)
CHECKS :
DEPOSITS (From check-
book)
CREDIT
DEBIT : (Post to ledger)
BALANCE (Current
checkbook balance)
PROOF (STATEMENT+CRE-
DIT-DEBIT)
Figure 4
i

j CHECKS DATA ITEM DEFINITIONS:

rvu\--\a-\u\uwnwnmz

FIELD TYPE SIZE MIN MAX

l {

{ !

21 AN 20 O 20

22 Date 3 1 36524 S

13 N 5 0 2147483647 3

Z 4% 4 0 21474836475

z 58 4 0 21474836471
6 N 4 0 2147483647

S 7 AN 50 O 50 S
8 AN 1 0 1

? Figure 5 -‘

10

FIELD TYPE SIZE MIN
F1 N 4

N
o

[ele e NelNeoNeNo Il NoleNe)

8
3
4
4
4
4
4
4
4

CHECKSIN.SUB: THE BATCH PROGRAM TO ENTER CHECKS

INTO THE DATABASE
ENTER B:CHECKS

SORT B:CHECKS BY ACCOUNT
COMPARE B:CHECKS B:GLEDGER NOT MATCHI

TITLE 'CHECKS NOT ENTERED TO EXISTING ACCOUNTS',L,L,'DATE ',DATE,L
PRINT RESULT BY NAME CHECKNO DEBIT CREDIT DATE ACCOUNT

COMPARE B:CHECKS B:BALANCE NOT MATCHI

TITLE 'CHECKS & DEPOSITS TO UNRECOGNIZED BANK ACCOUNTS ',DATE,L,L
PRINT RESULT BY NAME CHECKNO DEBIT CREDIT DATE ACCOUNT

MAX
2147483647
20

8

36524
2147483647
2147483647
2147483647
2147483647
2147483647
2147483647
2147483647

NG ACCOUNT

NG NAME

COMPARE B:CHECKS B:BALANCE MATCHING NAME

EMPTY B:CHKTEMP OK
APPEND B:CHKTEMP.DAT $$$$.DAT

COMPARE B:CHKTEMP B:GLEDGER MATCHING ACCOUNT

TITLE 'CHECKS TO BE POSTED, ON DATE '

EMPTY B:CHKTEMP OK
APPEND B:CHKTEMP.DAT $$$$.DAT
APPEND B:CHECKAUD.DAT $$$$.DAT

POST B:GLEDGER RESULT BY ACCOUNT AND ADD DEBIT,CREDIT

COMPUTE B:BALANCE ST DEBIT=0+0
COMPUTE B:BALANCE ST CRED I T=0+0

POST B:BALANCE B:CHKTEMP BY NAME AND ADD DEBIT,CREDIT

COMPUTE B:BALANCE ST CHECKS=DEBIT+0

,DATE, L,L
PRINT RESULT BY CHECKNO DEBIT CREDIT DATE ACCOUNT

COMPUTE B:BALANCE ST DEPOSITS=CREDIT+0

COMPUTE B:BALANCE ST BALANCE=BALANCE+DEPOSI|TS-CHECKS

COMPUTE B:BALANCE ST CRED | T=CHECKS+0
COMPUTE B:BALANCE ST DEBIT=DEPOSITS+0

POST B:GLEDGER B:BALANCE BY ACCOUNT AND ADD DEBIT,CREDIT AND REPLACE MONTH

COMPUTE B:GLEDGER ST YTDAMT=DEBIT-CREDIT

SELECT B:CHECKAUD ST PROCESSED NE Y
COMPUTE B:BALANCE ST CREDIT=0+0
COMPUTE B:BALANCE ST DEB|T=0+0

POST B:BALANCE RESULT BY NAME AND ADD DEBIT,CREDIT
COMPUTE B:BALANCE ST PROOF=STATEMENT+CRED IT-DEBIT

TITLE 'OPEN CHECKS AS OF ',DATE,L,L

PRINT RESULT BY CHECKNO DEBIT CREDIT DATE ACCOUNT

TITLE ,BANK BALANCES AS OF ',DATE,L,L

PRINT B:BALANCE BY NAME ACCOUNT STATEMENT BALANCE PROOF

HELP B:RESTART

()

1666666664 566666666064 o :
04 v =
E;I TABLE | . =
S Fegie & Flghces, oo :: :
B PP PEI30305005000000 - - - - 2000000500333 30835559 - TerTTITE ! w
‘04 . 333 T) O R XX)
34%{ Package or Version name: =E ey W =,
CONDOR SERIES 20/DBMS LEVEL | & Il $ Bocumentat fon i =
19000000000 90000000000000 - - - 2033005500300 0000 organization for learning §R =
Prices Level I $695 4 organization for reference “.'
Level 11 $995 1 . readabil ity E‘.
Upgrade | to Il $350 3 = includes all needed information i
: e “ :ii-“l"..--...“"-.--.-.“'..--...”..----ﬁglm..---.."".
5 Systems available for: o4 i Ease of use §
3 CP/M (1.4 and up)) initial start up
3 CDOS (2.36) = conversion of external data
B33 MP/M (Level 11 only) = application implementation
’:1, :: operator use
4) L O (0™ ! O
‘+s¢ Required supporting software: :. e " FRIARACRmD
B39 Operating system with SUBMIT utility ! FroF recovery
.es ey from input error
el - - -:- . .
33! Hardwire requirements: o4 % restart from interruption
EEE 280 cpu 34 :.' from data media damage
3 48K user RAM (includes CP/M, excludes MP/M) i3t & B e
pe 2 disk drives with total capacity of 500Kb 183 o upport
PO IR T TP T YT TS T TTOL Y TN T o8 for initial start up
Utility programs provided: 133 for system improvement 3
NONE 38 R e e S
1P
Record size & type |imits: 33 ¥ Ratings in this table will be in a 1-7 scale
L & ol
Fixed length, binary used internally, :E~ where:
el L - -
$%. 2 to 1024 bytes, 1 to 127 fields/record, NT = not tested 2
ii 1 to 127 bytes/field, 1 to 10 digits, up 1 = clearly unacceptable for normal use :
:ii: +o 32767 records/{le 4 = good enough to serve for most siTuaﬂons. :
3! External record types: & 7 = excel lent, powerful, or very easy depending g
33 Fixed length ASCII w/o delimiters $# on the category =
Variable length ASCI| w/delimiter 33 ** Relati | + I d Shadl T d -
364 elational systems are we esc ed in a
(readable by most BASICS) - SYs]) ‘ scri : °
Fixed length ASCI| w/inter-record delimiter 33§ references cited in this review. |If some sort of x
2° 00 0000000000000 0000000000000000000 0 +4 ,,,...x,.,,,,l.NN Supplemen‘i'ar‘y +eX1. FS USed 'fO gain a broad Under- :
¥ Portability: b3 standing of the system, the documentation should be 5
o GOOD PORTABILITY among CP/M systems :EE very adequate. An attempt is made to provide enough Ef
':' except for some terminal problems. Good ‘EE |r‘1forma+ion to al]ow novic? users to impleme'nf)
b os] application design portability to other 33 simple databases without having to use any outside .:
EEE relational systems. EEE materials. |t has been successful in this for at ::
Saneneee g CER IR IR R LR * _‘:" least one such novice.)
o8¢ e A e e e A
ssi User skill level required: G LSS B =
o A novice could implement useful systems, an
4 "f expert could implement very complex ones.
SEOUNELLI8664666666000000006600 044 IRDRBFTHTELLTTITTTITY
‘4 P-4
$3: System upgrade policy: o
3 Nominal cost for upgrades within Level 33
EEE Difference in price plus modest charge for :E
poo upgrades from one level to another *e
S T

V2.
S
N

i

K

11

12

TABLE |11
Data Management Capabilities

A. Underlying Data Model
1. Data Types char,integer,dollars,date
2. Relationships full relational n:m

Functions Provided

l.a. Data dictionary maintenance :

All functions in Series 20 are performed
with the same commands used to input, edit
and manipulate ordinary datasets (except
+he screen formatting and initial file
definition)s This lends simplicity and
elegance to the system which makes it ea-
sier to learn. However, the lack of spe-
cial facilities for dictionary listing and
field specification modification are some-
times inconvenient. Dictionary maintenance
is more than adequate but could stand some
improvement .

b. Data reorganization & conversion:

This is one of the strongest features of
Series 20. A special command is provided in
Level | (and |1, of course) to allow the
addition or deletion of fields from exist-
ing datasets in a very straight forward
manner - data already entered is reformat-
ted, new fields are padded.

A number of formats are provided for
reading and writing external data. I+
should be relatively simple to convert data
I from or to Series 20 datasets. Formats are
i provided which are compatible with typical
BASIC (both sequential and random), FOR-
TRAN, RPG and COBOL 1/0 packages, as well
as formats appropriate for transmission tfo
record oriented host systems in distributed
processing applications.

2.a. Data entry and editing:

Development of screen formats is very con-=
venient allowing "form-oriented" data en-
try. Multiple "views" can be provided onto
+the same datafile by definition of al-
ternate screen formats. Data validation is
limited during data entry, but batch pro-
cesses can be used to perform arbitrarily
complex validation. Editing of data in the
sense of updates and corrections is exten-
sively supported with predicate selection
of records to be modifieds A user can also
page through a file and modify randomly
chosen recordse

b. Report generation:
Report generation is quite limited at pre-
sent, promised upgrades will first (and
soonest) provide subtotaling capability,
and later a more complete report generator.
(They've suggested that this will not in-
volve a price increase, but such things
have a way of changing.)
e e e
i e e

TABLE |11l (continued)
3.a. Data selection by predicate:

And how! Up to 32 terms can be specified
in the predicate using the usual set of
relational operators. The major current
limitation is that only 128 characters may
be input as a single command. \

b. Data joining & relating multiple

data sets:
The JOIN is officially only available in
the Level |1 version, but the POST command

which is functionally equivalent to the
UPDATE facility in CBS, allows one to a-
chieve the equivalent in a much more round
about fashion.

The ability to relate multiple datasets
is the sine qua non of the relational mo-
del. Condors Level | provides most of these
facilities, Level || supplies the rest.

c. Calculations on data:

The COMPUTE command provides the four basic
arithmetic functions between fields or |
between a field and a constant. No pre-
sidence is maintained and parentheses do
not change the order of operations. This
function is sufficient for most business
applications, but not striking.

4.a. Data independent application interface:
The READ and Write commands are the only
mechanism currently provided. This is bare-
ly sufficient and is certainly not data in-
dependent. Some mechanism for direct access
to datasets is needed which uses the def-
inition file to provide automatic con-
version on request. Something like this
might be possible using MP/M's interprocess
communication c1, but this is beyond the
capabilities of most microcomputer users.

readme

Last month our charter subscribers received a let-
ter and a survey--the former to remind them that
renewal time is around the corner, the latter to
elicit their opinions on Lifelines. [It's not too
early for those of you who began with us last June
to renew your subscriptions. We don't want you to
miss a single copy.

When you renew or change your address please en-
close one of your current mailing labels, or a
photocopy of it. That way we can serve you as
promptly and efficiently as possible. We've al-
ready lost one or two of you who haven't reported
address changes (but then you aren't reading this).

SBAS

Author's note: Part 1 of this pro-
duct review was mostly devoted to
some first impressions of S-BASIC.
This installment will deal primari-
ly with the structure oriented
features of that language. Again, |

would like to +thank Gilbert
Ohnysty, the author of S-BASIC, for
his help and insights.

The term, structured, is rather

ambiguous as it describes not only
the design of certain languages but
also an approach to programming
which helps one to create easily
readable and maintainable code.
This is a most desirable objective
especially in the case of large,
complex programs. To some extent, a
programmer's competence can be
gauged by the degree of structure
with which he or she writes. Struc-
tured techniques are virtually man-
dated when several programmers col-
laborate on a single project be-
cause each programmer's code must
interact properly with that written
by others. Under such circum-
stances, it is common practice for
programmers to debug troublesome
segments of each other's work. This
is a most efficient approach, but
one which requires that code pro-
duced by members of a programming

team all be written in a single,
readable style. This style, of
course, is structured.

BASIC and FORTRAN are essentially
unstructured and the programmer
using either of these languages
must adhere to special disciplines
in order to implement even marginal
program structure. One technique
for maintaining structure is called
top-down programming, which means
simply that no backward references
are made via jumps or subroutine
calls. In fact, some purists insist
that proper 'top-down' programming
does not even allow backward refe-
rences as returns from subroutine
calls. In other words, each program
line executed should be physically
closer to the logical end of the
program than the previous line
executed. As is the case with un-
structured programs, there may be
one or more lines which are never
executed due to variables presented
at run time; more than one logical
exit from a program may exist.
While it is possible to write

C. VERSION 5.3 PART 2-B

clear, structured code in either
BASIC or FORTRAN, it is not easy,
especially in the case of large or

complicated programs.

Structured languages, (often called
Block and Procedure oriented lan-
guages), such as Pascal, ALGOL, C
and PL/| are popular amongst pro-
fessional programmers as they have
been designed to minimize confusing
and potentially troublesome logic
design. Despite the fact that these
languages do offer unconditional
Jjumps equivalent to the GOTO state-
ment in BASIC (or the GO TO of
FORTRAN), many good programmers
deliberately avoid such jumps en-
tirely. The recently coined term
'60TOless programming' refers to
what some consider the essence of
good program structure.

FORTRAN 77 was conceived in large
part to improve upon the structural
deficiencies of earlier FORTRANSs,
and it includes many features of
the more traditionally structured
languages.

CBASIC was the first widely used
microcomputer BASIC to support
readable, structured programs with
features such as long variable
names, WHILE/WEND, multi-line user-
defined functions, free use of
'white space' and relaxed line
numbering requirements. S-BASIC has
taken this idea a lot further by
incorporating not only these fea-
tures but also many others which
until now were only available in
the purely structured languages.

PROCEDURES, FUNCTIONS AND BLOCKS

Figures 1a and 1b represent a sim-
ple BASIC program. Figure la illus-
trates this program using the clos-
est approximation of structure a-
vailable in standard BASIC. Figure
b demonstrates that same program
using the more structured approach
of S-BASIC.

Two major differences between ex-
amples 1a and 1b are apparent. In
S-BASIC, all variables must be de-
clared by name and type (variable

declaration was discussed in the
last installment); also procedures
are used in place of subroutines.
'Fall-through' of program logic

LL BURTON

from top to bottom is obvious
1b. Note also that the main porﬂon
of the S-BASIC program exists (or
may exist) as a block. Blocks will
be explained shortly.

As regards variable declaration, it
is not a requirement of standard
BASIC. Nonetheless, many program-
mers are in the habit of declaring
variables at the beginning of a
BASIC program. This, however, is
usually done to order the variable
lookup table for increased execu-
tion speed rather than for struc-
ture.

Procedures differ from subroutines
in that they must be declared clos-
er to the beginning of a program
than any statement which accesses
them, and procedures are accessed
by name rather than by line number.
The way to declare a procedure is;
(elements in square brackets are
optional):

PROCEDURE <name> [(argument.def
[;argument.defl)]

<body of procedure>
END

Figures 2a and 2b, which represent
functionally identical programs,
illustrate the difference in usage
of subroutines and procedures.

User defined functions are declared
as follows:

FUNCTION <npame>
gument])]l=<type>
<body of function>
END=<expression>

[(argument [; ar-

In the above example, <expression>
is the value which will be returned
when the function is called.

A block consists of any number of
program statements which appear
between matching BEGIN and END
statements. Blocks logically cor-
respond to a single program state-
ment. A block structure might
appear as:

REM LINE NUMBERS FOR
REFERENCE ONLY

1: BEGIN

[declare variables]
<some BASIC statements>

[[BEGIN
B> 3

S~ W N

5 [declare variables]

6: <some BASIC statements>
7 END]

8: <more BASIC statements>]
9: END

In this example, an
nested block is represented by
lines 4-7 and line 8 is meaningful
only if the optional block exists.
Blocks may be nested to any level,
with memory being the only limiting
factor.

optionally

GLOBAL AND LOCAL VARIABLES

Any variable declared within a
block or which appears as an <ar-
gument> to a procedure or function
will be local only to that single
structure. As soon as a structure's
END statement is processed, the
memory space used by variables
local to that structure can (and
will) be reclaimed by S-BASIC. When
a local variable is created, it is
considered global to any blocks
nested within the outer block in
which the variable was originally
declared.

In standard BASIC,
are global.

all variables
This gives the pro-
grammer an unenviable choice; ei-
ther to assign unique variable
names for each new program element,
thus wasting memory and compromi-
sing execution speed, or conversely
reusing selected variables. The
latter choice decreases program
readability in proportion to the
number of reassigned variables and
is often the very way in which
serious, hard to find bugs first
find their way into a program.

In some of the classical structured
languages (especially Pascal), the
compiler may have to resolve a
conflict which arises when a global
and local variable share the same
symbolic name. In such cases, the

local will generally have prece-
dence, thus also modifying the
global. This can produce disastrous

results which neither the compiler
nor the object program recognize as
errorse. In S-BASIC the 'standard'
has been redefined so that global
variables have precedence, with
subsequent attempts to declare con-
flicting local variables being un-
acceptable to the compiler. Appa-
rently, this has occasioned a few
complaints from users who are ac-
customed to doing things the other

14

way, but this variance from the
standard seems consistent with the
S-BASIC design philosophy of only
attempting change for good reason.

Mr. Ohnysty suggested a method for
ordering the elements of an S-BASIC
program which, in addition to pro-
moting good structure, will help
the programmer avoid the kind of
problems which can result if there
is an assignment conflict between
global and local variables. The
recommended method requires decla-
rations to be made as follows
(note: any of items 1-5 below might
be optional):

DECLARE :
1: Variables global to program,
procedures and/or functions
2: COMMON variables

3: PROCEDURES [and their local
variables]
4: FUNCTIONS [and their local
variables]

5: Variables local

And only then:
6: The beginning of the main
programe

to program only

In the course of answering some of
my questions about S-BASIC, Mr.
Ohnysty explained at length the
rationale behind setting up an S-
BASIC program exactly as shown. |t
is beyond the scope of this article
to list the (fechnical) reasons why
this approach is so strongly recom-
mended; but, since this advice is
offered courtesy of S-BASIC's au-
thor, it should be copied and at-
tached to each user's manual! Inci-
dentally, although the manual is
good, | feel that it would be much
better if it included more helpful
hints, such as the important one
above.

CONTROL STRUCTURES

S-BASIC offers the widest variety
of control structures of any BASIC
offered to date. Those listed below
can be used exactly as in other
BASICs:

GOT0/GO TO
GOSuUB

ON GOTO

ON GOSUB
IF-THEN [ELSE]
FOR-NEXT [STEP]
ON ERROR GOTO

Interestingly, the ability to de-

clare character type variables per-
mits statements of the form:

FOR LETTER =
<body>
NEXT LETTER

IA' TO lZ'

The ON ERROR GOTO statement ty-
pically selects one of several
user-written error handling proce-
dures, depending on the value of an
error code which is generated at
103H when non-fatal errors occur at
run time. Fatal run time errors
require the source program to be
corrected and recompiled.

S-BASIC offers the REPEAT-UNTIL and
WHILE-DO commands which like the
more familiar FOR-NEXT are used for
iteration. The use of these com-
mands is shown in figures 3a and
3b. Standard BASIC code which would
produce the same results is shown
in figures 4a and 4b.

In examples 4a and 4b the loss of
top-down structure occurs as a
result of backward jumps. Even if
REPEAT-UNTIL or WHILE-DO are used
as structured alternatives, it is
likely that backward references are
being internally generated by the
compiler, this however should be of
no concern to the programmer.

The CASE-OF statement is another
useful S-BASIC implementation.
CASE-OF accomplishes the same thing
as |F=THEN:GOTO (or possibly ON-
GOTO) in standard BASIC. See fi-
gures 5a, 5b and 5c.

Using the CASE-OF structure avoids
all the jumps which are evident in
examples 5b and 5c.

Except for the ON ERROR GOTO state-
ment, it is possible to write sub-
stantial programs in S-BASIC with-
out using numbered lines. Still, S-
BASIC offers line numbering, or
more accurately, line labeling. Any
unreserved ASCl| character may be
used within a line label as long as
the first character is numeric.

would recommend choosing a single
digit, such as '0' to place at the
beginning of each line label,
thereby making the S-BASIC restric-

tion insignificant. See figures 6a
and 6b.
As illustrated in example 6b, S-

BASIC's line labels support highly
readable code. There is also ano-

ther important benefit; REM state-
ments used to clarify GOSUB and
GOTO references in standard BASIC
are no longer needed when self
explanatory label names are used.
Using GOSUBs and GOTOs (except with
the ON ERROR statement) is not the
ideal approach to programming in S-
BASIC, but it is worth noting that
these capabilities have been imple-
mented most intelligently.

S-BASIC includes many user oriented
convenience features which will
provide the principal focus of next
month's installment. One such fea- |
ture, which allows the user +tol
create formatted screen displays on
the very first try, is so useful
that | will preview it here.

TEXT <device>,<del imiter>

For example, a menu screen might be

set up like this:

REM DEVICE O IS THE CONSOLE
TEXT 0,8&

ENTER:

1: To create a new file
2: To erase an old file
3: To create index file

Everything between the delimiting
(&) characters will appear exactly
as entered. PRINT statements, en-
closing quotation marks and TAB
statements are no longer needed! In
addition, the TEXT command is fast!f

Author's note: After just one |
month's exposure to S-BASIC, | feel |
confident saying that we are deal-
ing with an exceptional product. In
order to prepare this review, | §
have written many short test pro-|
grams (and some not so short test |
programs), which were designed toj
isolate potential problems. To
date, S-BASIC has performed flaw-
lessly in all of these tests. Na- |
turally, further testing with even
larger programs will be required +o
confirm or disprove [my] iniﬂal
positive reaction to S-BASIC. But,
since first using XYBASIC some four
years ago, | have not been encou-
raged to this degree by the appa- §
rent reliability of any new BASIC.

Flgure la
structured' program
|n standard BASIC

BEGINNING OF PROGRAM
HDEF INE FUNCTION

N (some code)

CALL DEF INED FUNCTION
CALL SUBROUTINE

| (more code)
HLOG ICAL END OF PROGRAM
RBEG INNING OF SUBROUTINE
(body of subroutine)
ETURN FROM SUBROUT INE
HYSICAL END OF PROGRAM

‘ziidiiii&i&i;

/4 /'/’/’/’/’/’/I/I/’/’/’/’II/I/'/’/I/’/’I’/”/"I"/I/’I’/.I/'/’/’/’/I/I/’/'/'/’/'/l/’/’/’/’/’/’/’/’/’/’/’/’/’/’/’/’/’I’/’_/'/’/’/’/I/’/’II/’_/_ Z L

igure |b
true structured program
n S-BASIC
DECLARE VAR IABLES
DEF INE PROCEDURE
JDEF INE FUNCTION
HBEGINNING OF PROGRAM [block]
¢some code»
CALL DEF INED FUNCTION
INVOKE PROCEDURE
ore code)
ND OF PROGRAM [block]
OGICAL & PHYSICAL END OF PROGRAM

R
| P
F
NA
i

igure 2a
sing subroutines - standard BASIC

i E
L
F
U

IO INPUT "ENTER DEGREES FAHR. ";
120 GOSUB 100

130 PRINT "DEGREES CELSIUS
N40 STOP
Al
b |

00 DC=INT(((DF-32)*5)/9)
10 RETURN

Figure 2b
sing procedures - S-BASIC

ARIABLE DGS,F=REAL

ROCEDURE FAR.TO.CEL

INPUT "ENTER DEGREES FAHR.
PRINT "DEGREES CELSIUS =
PRINT INT(((DGS.F- 32)*5)/9)
END

"; DGS.F

EGIN

B
FAR TO.CEL
END

igure 3a
HE REPEAT - UNTIL COMMAND
EPEAT
BEGIN
A=A+X
END
UNTIL A) 100

;J—""I

FIGURE 3b

THE WHILE - DO COMMAND

HILE A<=
EGIN

A A+X

100 DO

@®=

igure 4a

uplicating REPEAT - UNTIL
00 A=A+X

10 IF AYI00 THEN 130

20 GOTO 100

30 (rest of program)

EN
F
D

igure 4b
uplicating WHILE - DO
100 A=A+X
10 IF A<I00 THEN 100
120 ¢(rest of program)

Oﬂ

jiHi2i&i&iii?i&iiiiiii%iiiiﬁ%ii5&5&5&5&5&3&5&;252ii5ii%5iiibmam'z'y‘zaz'mow-z'zaubm-w'x-w'z-uoM-Mam-zauqmJ%a%oz-z-m-uaz'A-z-m.u.m-z-z-z-zqmam-z-z-uazav

/’/’/’/’/’/’/’/’/’/’/’/’/’/’/’/’/ 4

........................... NN
~|\' Flgure 5a !#
\,!n THE CASE - OF STATEMENT N
‘!I!! """"""""""""""""""""" N
N CASE REPLY OF \
Ny A:RET.TO.MENU N
NI} B:REENTER.F ILENAME N
NN ¢:4B0RT \
NN END \)
NN \;
Nl - N
!|i! Figure 5b i\
Qii! DUPL ICATING CASE - OF \)
NNl -o--om oo \
NY| 10 REM USING IF-THEN: GOTO N
i!‘i 100 INPUT "ENTRY ?"; R$ i!
NIY (10 IF R$="A" THEN 1000 N
NI 120 IF Rs="8" THEN 2000 N
NN| 130 IF R$="C" THEN 3000 N
NI 140 coTo 100 N
N} 1000 REM MENU I\
L] 2000 REM REENTER FILENAME N
i!ii 3000 REM ABORT PROGRAM N
NI N
SE! Figure 5c N
!ii! DUPL ICATING CASE - OF '\,
N LR TR R TR LR N
NIY{ 10 REM UsING on/GoTO N
i!‘i 00 INPUT "ENTRY 2"; R$ i!
NDY 110 IF ASC(R$)(85 THEN 100 N
N 120 A=ASC (Rs)-64 N
NIN| 130 ON_A GOTO 1000, 2000, 3000 NI
NN 140 coTo 100 N
] 1000 REM MENU \;
N 2000 REM REENTER FILENAME \
N 3000 REM ABORT PROGRAM N
N N
!is! Figure 6a \
Q;i! NUMERIC LINE LABELS - STD. BASIC §}
RN - \;
NIY| 100 REM CLOSE FILES N
i!‘i 110 GOSUB 1236 N
NIY 20 REM GO BACK TO GP/M !
NN 130 60To 9999 .
IR =
\!.' [
‘l\! " |
NN Figure 6b :
i!!i ALPHANUMERIC LINE LABELS - $-BASIC N
NIY --------mmmmmmmm e !
!|=! GOSUB 0.CLOSE.FILES |
!ii! 60TO 0.BACK.T0.CPM N
!|i"/’I’/’/’/’/’/’/’/’/’/’/’I’/’/’/’/ N |
!li!

!ii! °

3y 1 d

W 11ps an

\|!|

W Tech

W Techniques
!,!IEdlfor s Note: Below is our win-
!h'nlng tip; in addition, we are
milpubllshlng two other contribu-
iN tions.

\:!l

&!II am one of those poor people with

\@'only a 64 character-wide video
m;:d:splay (Polymorphics VTl)e Since
..lmy first days with my new CP/M
\] system, | was very unhappy with
M!|The way the D(ump) command of DDT
Qplprogram outputs to the screen.
Q'Apparenfly, the Digital Research
aufhors only considered those for-
ITunafe people with °standard' 80-
| wide displays when they developed
this command output format.

/I/’/’/’/’/’/I/’

In order to more easily read the
hex and ASCI| format, the space
that is placed between each hex
value can be removed to reduce the
characters per line to under 64

»—>

(L Al e il Ll L L 22 22

16

for displays like mine. Since the
same technique is used in both DDT
and SID, | have given the patches
for DDT (versions 1.4 and 2.2) and

SID (version 1.4). | have not
seen ZSID; so if the output is
similar, | hope someone will sup-

ply the appropriate patche

Both DDT and SID are written to
relocate themselves to the highest
available memory after initial
loading at hex address 100. We
can use this non-relocated copy to
install the necessary patches.
The patching process is very sim-
ple. Enter DDT or SID without any
operands.

ForDDT Vers 1.4 or 2.2

1e List address A16 which should
be a JNZ 805.

2. Change this instruction fo JNZ
808.

3. Exit from DDT(Control C) and
save 19 DDT2.COM.

For SID Vers 1.4

1. List address AA4 which should
be a JNZ 893.

2. Change this instruction fo JNZ
896.

3. Exit from SID (Control C) and
save 28 SID2.COM.

Re-execution of DDT2 or SID2 will
call in the corrected versions.
Upon verification of the change
you may wish to then rename these
new versions back to the original
names.

Tom Cochran

The following tip is a fime-saver
for users of Wordstar. |t con-
cerns the print command ("P" or
"ctl. KP") and permits you to
more quickly and easily accept
default responses to the queries
which follow the command ("DISK
FILE OUTPUT?", etc.)e Normally
when you wish to print a file and
accept the defaults it is neces-
sary to carriage return through
all the questions. A faster way
to accomplish this task is fo
depress the "ESCAPE" button on
your keyboard, immediately after
naming the file fo be printed.
Anonymous

Products

BOSS Financial
by Balcones

This system includes Accounts
Receivable, Accounts Payable, and
General Ledger. BOSS is on line
at all times; it supports a total
of 9,999 customers and vendors.
Statements, aged reports, checks
and mailing labeis can be pro-
duced with the various journals.

Accounting System

In addition, BOSS includes the
following among its most impor-
tant attributes: statements of
changes in financial position are
supplied; financial ratio analy-
sis for management, reporting and
planning is handled; loan pay-
ments are calculated; amortiza-
tion and depreciation schedules

(continued next page)

/

OFTWARE

Introduction to Pascal $14.95

UPGRADE YOUR FLOPPY DISK

COMPUTER TO HARD DIiSK!
NO "SOFTWARE TEARS® WITH LIFEBOAT'S
SELF-SUPPORTING MODULES.

YOUR CURRENT CP/M 2.x CAN NOW MANAGE
A HARD DISK DRIVE WHILE STILL MANAGING

YOUR FLOPPIES.

PRICED AT $125. EACH OR $80. WHEN
ORDERED SIMULTANEOUSLY WITH CP/M 2.x

ANY MINUTE NOW!
CP/M for Datapoint 1650

o~

FPL

“The BOSS Financial Accounting System

CALL OR WRITE

(212) 860-0300
TELEX 640693

"SUPERMARKET
AVAILABLE NOW!

$195.
$250.

«I f

é

{\

)

..1\\‘“

LIFEBOAT ASSOCIATES

1651 THIRD AVENUE

Advertisement

NEW YORK, NY 10028

are implemented. Departments can
be assigned separate income
statements and balance sheets.
Programs and data are checked
with each reading; this helps
keep the user alerted to hardware
and/or disk malfunction.

BOSS has three levels of password
security and immediate postinge.
At the top security level changes
and corrections may be made with-
in a given accounting period,
without an adjusting entry.

Other journals which can be pro-
duced include: Cash Receipts,
Cash Disbursements, General Jour-
nal, Transaction Journal, Pur-
chases Journal, Sales Journal,
and Check Register. They may be
printed for a whole period or
according to user-selected dates.
The journals can be sorted by:
reference number; transaction,
entry or due date; check, in-
voice, or purchase order number;
customer or vendor number. Data
entry is simplified, using a
facsimile of manual accounting
methods, employing word process-
ing-like controls.

A configuration program allows
keyboard customization. This
package was written using Micro-
soft's BASIC-80 compiler. It
requires a 48K CP/M, two floppy
drive, a 132-column printer, and
an 80 by 24 CRT.

CONDOR

by Condor Computer Corporation

A detailed review of this data-
base manager appears in this
issue, pages 6-13. |t requires a
CRT with an addressable cursor
and clear-screen functions, as

well as a printer which will
handle form-feeds.

PAS-3 Medical

PAS-3 Dental

by Artificial Intelligence, Ince.

The Patient Accounting System is
a video-oriented system for
account-management and billing in
individual or group practice.
PAS-3 Dental differs from Pas-3
Medical only in details. For
instance, when charges are en-
tered for treatments, the denta
user is asked by a screen-dis-
played message to supply tooth
numbers and surface numbers.
Screen prompts of this kind are a
constant feature of both PAS-3
versions; both are also menu-
referenced.

Reusable formats for both pa-
tients' and insurance bills are
created by the user. |tem head-
ings can be omitted or placed
anywhere on the printed sheet. A
library of "blank" insurance
billing forms can be produced; at
billing time PAS-3 will call the
appropriate form by code number
from each patient's record, and
complete ite

Ten different types of patients'
accounts are supported ("no
bill", "hold bill", "welfare",
"insurance budget plan", "cash",
"insured with no bill to pa-
tient", etc.) and preauthorized
treatment charges can be included
on insurance bills. |f the user
wishes, PAS-3 will calculate
service charges for overdue a-
mounts and add it to patients'
billse

Current charges are entered as
incurred, and records are re-
viewed on screen and may be
printed out. PAS-3 consults a
recall file to make a set of
mailing labels for patients who
should be reminded of impending
appointments. Mailing labels are
produced for all other purposes
by a program that picks out re-
cords using a key-search formula
set up by the user from such data
categories as date of last visit,
amount greater than..., age o-
Vere., and others.

Built-in routines produce (and
then print out or screen-display)
arrears aging reports, an "unde-
featable" delinquent charges
list, a producer (practitioner)
activity report, a new accounts
list, summaries of monthly and
daily charges and receipts, and
procedure profitability analyses.
A query program allows the user
to format special analytical sum-
maries using two search-keys si-
mu | taneously.

The privacy of PAS-3 records is
protected by a password user-
access sytem. You must have at
least 56K with CP/M 2.xx (48K
with earlier CP/M versions).
CBASIC-2 (2.06 or higher) is
required.

PMATE
by Phoenix Software Associates,
Ltde.

This text editor is reviewed in
this issue, pages 3-5. |t re-
quires a cursor addressable
serial terminal or memory mapped
video.

Tiny C Two

by Tiny C Associates

This compiler written in Tiny C
requires 32K. The disk includes
the source code, faster 1/0 than
Tiny C, and intermediate code-
emitting capabilitiess

New O OGO

Versions

CP/M 1.42 for Altair,
and iCOM 3812
This change implements the patch

iCOM 3712,

reported in the October Lifelines
(Volume |, Number 5, page 14).
With this new version, Microsoft

BASIC, Pascal M, MDBS and other
software will run properly. Per-
tec BASIC will not operate with
this version.

CP/M 2422 on North Star

The following bugs have been
fixed in this version:

1-CONFIG version 4.0 corrects
device selection in DSPCH rou-
tine of the Horizon User Area.
In CONFIG 3ex RRC is now RLC, at
location 105F.
2-Read after
repairede.

3-An attempt to write on a disk
with a write protect tab will
now yield an immediate disk
error message.

4-The cold boot loader now re-
turns to location E800H PROM
upon errore

write has been

Microspel| Version 4.1

The following changes have been
made in this version:
1-Microspell will now check
single-letter words after BUILD
has been used to insert them in
the dictionary.

2-The maximum word length has
been extended to 29 characters.
Oversized words will be flagged
with a "2 TOO BIG" message.
3-The interrupt manipulation has
been removed. Microspell now
works with computers which will
cease to function with the in-
terrupts disabled (e.g., Super-
brain, Altos).

4-The QUIT command now requests

(continued next page)

18

(Y/N) to avoid ac-
aborting of the pro-

verification
cidental
grame
5-To save disk space, an /Q
switch has been added; it sup-
presses the creation of a backup
files

6-One guessing routine has been
expanded so that more guesses
are provided.

7-Suffix stripping and verifica-
tion routines are tighter.
8-The dictionary has been ex-
panded to over 25,000 entries.
9-The line numbers of target
words and suffix expansions are
now printed. This feature is
only functional when the file
uses line feeds in the usual
manner .

10-The BUILD utility will now
report the total number of en-
tries added to each LEX file,
including misspelling/correction
pairse. |f there are no changes
it will not write the current
LEX file back to diske

These bugs have been corrected:
1-A word with an apostrophe as
its second character is no long-
er treated as two words.
2-0Only those words recognized by
suffix stripping will now appear
as upper case in the EXC files
3-LEX files now contain the
version number, so that BUILD
and INVERT cannot perform poten-
tially disastrous changes on
incompatible versions of LEX.
SPELL, in this version,
check the version number.

Pascal/Z Version 3.3

These changes have been made in
the new version:

1-Separate modules are numbered,
allowing separate compilation
and accurate tfracing across
modu les.

2-INCLUDE files are implemented.
INCLUDE temporarily changes the
input file to the assembler,
allowing code in another file to
be inserted into a program dur-
ing assembly. When the INCLUDEd
file is exhausted, the assembler
resumes reading the source lines
from the original source file,
recommencing with the line after
the INCLUDE instruction. Nested
INCLUDEs are not allowed; a
file which is an argument to the
instruction may not itself con-
tain any INCLUDE instructions.
3-RENAME and ERASE have been

does not

added.

4-There is a new floating
point/fixed point output format.
5-Explicit input from the con-
sole can be implemented, using
CON: .

6-The compiler now checks for
implementation limitation of
forty fields per RECORD in RE-
CORD declarationse.
7-Range-checking of SETs has
been improved.

8-'s' is now checked for at the
end of a PAS file.

9-Duplicate field names are now
checked in a RECORD.

10-Ten (instead of nine) signi-
ficant characters are permitted
in reserved words.
11-Eight-character file names
with four-character extensions
are corrected for.

12-All SETs are 32 bytes in
size.

13-Value parameters passed fo
user routine are checked.
14-New UCTRANS files have been
added.

15-EXTERNALS can be declared
only in the main module, not in
separate ones.

16-A new listing file has page,
statement, line and nesting
level numbers.

These bugs have been righted:
1-Run time range errors are
better reported.

2-Pascal/Z permits output of
functions returning a structured
type which normally can be
outpute

3-String relational operations
for strings 255 characters long
are handled properly.
4-Floating point output has been
corrected to handle "2 to the
23rd"and "2 to the 23rd plus
one" output.

5-Output of a REAL expression fo
a non-text file is corrected.
6-The VAR parameter is fixed.
7-Now there is correct compensa-
tion for a function returning a
string, when that function is

the parameter of one expecting a
length stringe.

different

Bug Fi ixes

B —

Pascal/Z Version 3.3

A bug occurs in LINK/Z when the
/0 (offset) and /P (load) options
are used. (These are the only
details we have from the manufac-
furer.)

BUG FIX

PL INK

This fix is for users of Plink
who wish to link programs meant
to run on 8080/8085 target ma-

chinese PLINK 3.25 introduces a
Z80 opcode into programs it
links. This fix corrects the
problem.

A>DDT B:PL INK.COM

DDT VERS 1.4
NEXT PC

4280 0100
-S2FD8

2FD8 ED 2A
2FD9 7B 06
2FDA AF
2FDB CD
2FDC D3
2FDD 32
2FDE 21
2FDF 06 00
2FEO 00 F9
2FE1 AF

A>N~CSAVE 66 PLINK.COM

Coming

In the next few months we'll be
featuring the catalogue and ab-
stracts of a new CPMUG volume.
Next month the final installment
of Martin McNiff's Osborne tu-
torials (describing Payroll) will
appear. In addition, a review of
SSS FORTRAN is in the works,
along with more commentary on
some other packages from Phoenix
Software Associates, Ltd.

We hope you'll be contributing
more tips and techniques--the
contest is still on. If you're a
recent subscriber and haven't
heard about the contest, give us
a call at 212-722-1700 for
detailse.

MICkOPrOCESSOr SUrrOnT I.L.’S

WE GUARANTEE FACTORY PRIME PARTS

We are going to become the largest supplier of prime
microprocessor support 1.C.’S. We guarantee that our 1.C.’S
are purchased from manufacturer authorized distributors.
This is the only way to deliver prime parts at the lowest
possible prices. Our committment is to offer the best price
and the fastest delivery to our customer. We give many
thanks to our valued customers who have helped us grow.

NEC 16Kx1 DYNAMIC RAM 200 N.S.
These are prime 4116’s from one of the best
MOS RAM manufacturers in the world.

4116 200ns
8 for $25.00 32 for 96.00
Only prepaid orders on this special.

NEC 1Kx4 STATIC RAM 250 N.S.
These are prime low power static ram’s NEC
for the finest in MOS MEMORY.
2114L 250ns
8 for $25.00 32 for $96.00
Only prepaid orders on this special.

8080A CPU 4.95 2708 EPROM 1Kx8 4.95
*8085A CPU 8.95 2716 EPROM 2Kx8 8.95
8086 CPU 99.95 2732 EPROM 4Kx8 21.00
8088 CPU 44.95 4118 STATIC 1Kx8 15.00
Z-80 CPU 10.50 4164 200ns 64Kx1 Call
Z80A CPU 12.95 Z80B CPU 21.00
Z80-P10 7.75 | 8289 49.95 | 4050 69 | 4531

Z80A-P10 9.75 | 4000 35 | 4051 1.10 | 4532

Z80-CTC 7.75 | 4001 35 | 4052 1.10 | 4539

Z8OACTC 9.75 | 4002 35 | 4053 1.10 | 4543

Z80-DMA 22.25| 4006 1.39 | 4055 3.95 | 4553

Z80A-DMA 27.75| 4007 .29 | 4056 2.95 | 4555

Z80-510/0 24.95| 4008 1.39 | 4059 9.95 | 4556

Z80A-S10/029.95| 4009 49 | 4060 1.39 | 4581

Z80-S10/1 24.95| 4010 49 | 4066 .75 | 4582

Z80A-S10/129.95| 4011 .35 | 4068 .35 | 4584

280-s10/2 24.95| 4012 .29 | 4069 .35 | 4585

Z80A-S10/229.95| 4013 49 | 4070 49 | 4702

3205 3.45 | 4014 1.39 | 4071 .35 | 74co00
3242 10.00 | 4015 1.15 | 4072 .35 | 74c02
8155 11.25 | 4016 .59 | 4073 .35 | 74co4
8185 29.95 | 4017 1119 | 4075 .35 | 74cos8
8185-2 39.95 | 4018 99 | 4076 1.29 | 74c10
8202 45.00 | 4019 49 | 4078 .35 | 74c14
8205 3.45 | 4020 1.19 | 4081 .35 | 74c20
8212 2.00 | 4021 1.19 | 4082 35 | 74c30
8214 3.95 | 4022 1.15 | 4085 1.95 | 74Cc32
8216 1.85 | 4023 .38 | 4086 .79 | 74ca2
8224 2.65 | 4024 .79 | 4093 99 | 74cas
8226 1.85 | 4025 38 | 4099 2.25 | 74Cc73
8228 5.00 | 4026 2.50 | 4104 1.99 | 74c74
8238 5.45 | 4027 65 | 4501 .39 | 74css
8243 4.65 | 4028 85 | 4502 1.65 | 74c89
8251A 5.55 | 4029 1.29 | 4503 69 | 74c90
8253 9.85 | 4030 45 | 4505 8.95 | 74c93
8255A 5.40 | 4031 3.25 | 4506 .75 | 74c95
8255A-5 5.40 | 4032 2.15 | 4507 95 | 74c107
8257 9.25 | 4033 2.15 | 4508 3.95 | 74c151
82575 9.25 | 4034 3.25 | 4510 1.39 | 74c154
8259A 7.30 | 4035 95 | 4511 1.39 | 74c157
8271 60.00 | 4037 1.95 | 4512 1.39 | 74c160
8275 32.95 | 4040 1.29 | 4514 3.95 | 74c161
8279 10.80 | 4041 1.25 | 4515 3.95 | 74163
8279-5 10.80 | 4042 95 | 4516 1.69 | 74164
8282 6.70 | 4043 85 | 4519 99 | 74173
8283 6.70 | 4044 .85 | 4520 139 | 74174
8284 5.85 | 4046 1.75 | 4522 .99 | 74c175
8286 6.70 | 4047 1.25 | 4526 1.15 | 74c192
8287 6.70 | 4048 99 | 4527 1.75 | 74c193
8288 25.40 | 4049 69 | 4528 99 | 74c195

MAIL ORDERS SHOULD BE SENT TO:
P.O. Box 21432 Seattle, Washington 98111
Telephone Orders & Inquiries (206) 453-0792
Minimum Order $10.00 Add $3.00 Shipping

.99 74C925 6.95 7418107 .45 7418244 1.95
1.256 74LS00 .35 74LS5109 45 7418245 4.95
.99 74LS01 .28 74LS112 .49 7418247 1.10
1.99 74LS02 .28 7418122 .55 7415248 1.10
3.50 74LS03 .28 7418123 1.19 7418249 1.69
79 741504 .39 7418125 1.35 7418251 1.79
.75 74LS05 .28 74LS126 .89 7415253 .98
1.99 74LS08 .39 7418132 .79 7418257 .98
1.01 74LS09 .39 7415136 .59 7415258 .98
.55 74LS810 .28 7415138 .89 7415259 2.95
.99 741811 .39 74LS139 .89 7415260 .69
9.95 74L812 .39 74LS145 1.25 7415261 2.49
.39 74LS813 .47 7415148 1.49 7415266 .59
.39 74LS14 1.25 74LS151 79 7418273 1.75
.39 74LS815 .39 74LS153 79 7415275 4.40
.49 74LS20 .26 74LS155 1.19 7418279 .59
.49 74LS821 .38 74L.S156 .99 7415283 1.10
1.65 741822 .38 7418157 .99 74LS290 1.29
.39 741L.S26 .39 7418158 .75 7415293 1.95
.39 741527 .39 74LS160 .98 7418295 1.10
.99 741528 .39 74LS161 1.15 7415298 1.29
1.85 74LS30 .26 7415162 .98 7418324 1.75
2.39 741832 .39 7415163 .98 7418347 1.95
.85 741837 9 7415164 1.19 7415348 1.95
.85 741838 .39 74LS165 .89 7418352 1.65
2.49 741842 .79 7415166 2.49 7418353 1.65
4.95 741847 .79 74LS170 1.99 741.S363 1.49
1.85 741548 9 74LS173 .89 7418365 .99
1.85 74LS51 .26 7418174 .99 7415366 .99
1.85 74LS54 35 74LS175 .99 741LS367 .73
1.19 74LS55 .36 74LS181 2.20 7415368 .73
2.49 74LS73 .45 7418190 1.156 7418373 2.75
3.50 74LS74 .59 7415191 1.15 7418374 2.75
2.10 74LS75 .68 74L8192 .98 7418375 .69
2.39 741576 .45 74LS193 .98 7418377 1.95
2.30 741878 .65 74L8194 1.15 7415385 1.95
2.39 741883 99 7418195 .95 7415386 .65
2.39 741885 1.19 7415196 .89 74LS390 1.95
2.59 741586 .45 7418197 .89 7418393 1.95
2.75 74LS90 .75 7418221 1.49 74LS395 1.70
2.75 741892 .75 7415240 1.95 74LS399 2.95
2.39 741893 .75 7418241 1.90 7418424 2.95
2.39 741895 .88 7415242 1.95 7415668 1.75
2.39 741596 .98 7415243 1.95 74LS670 2i29
RETAIL STORE
1644 116th NORTHEAST
BELLEVUE, WASHINGTON 98005

FOR THE FINEST IN MICROPROCESSOR SUPPORT I.C.’S

20

PRODUCT NAME

A-NATURAL Assembler Package

A3+ Development Package

A4 Development Package

Accounts Payable/Cybernetics
Accounts Payable/Graham Dorian
Accounts Payable/Structured Sys
Accounts Payable/Peachtree
Accounts Receivable/Cybernetics
Accounts

Accounts Receivable/Peachtree

Accounts Receivable/Structured Sys

ALDS TRSDOS

ALGOL 60 Compiler

ANALYST

APL /V 80

Apartment Management

ASM/X ITAN

Automated Patient History
*BASIC-80 Compiler

BASIC-80 Compiler

BASIC-80 Interpreter

BASIC Utility Disk

*BSTAM Communication System
*BDS C Compiler

Whitesmiths' C Compiler

BSTMS

BUG / uBUG Debuggers

Cash Register

CBASIC Compi ler

CBS Applications Builder

CIS COBOL Compiler

*CIS COBOL Compact

FORMS | COBOL Form Generator
FORMS 2 COBOL Form Generator
COBOL-80 Compi ler

*COBOL-80 PLUS M/SORT

*CONDOR

CREAM (Real Estate Acct'ng)
DATASTAR Information Manager
Datebook

DESPOOL Print Spooler
DISILOG Z80 Disassembler
DISTEL 780/8080 Disassembler
EDIT Text Editor

EDIT-80 Text Editor

ESQ-|

ESQ-1 DEMO

FILETRAN

FILETRAN

F ILETRAN

FILETRAN

Financial Modeling System
FORTRAN-80 Compiler

FORTRAN Package

*EPL
General
General
General
General
General
GLECTOR
HDBS
HDBS
HDBS.SRS
HDBS
1BM/CPM
Inventory/Graham Dorian
Inventory/Peachtree
Inventory/Structured Sys

Job Costing

KBASIC Interpreter

KISS File Management System
*LETTERIGHT Text Editor

LEVEL 3 BASIC / G2

L INKER

MAC

MACRO-80 Macro Assembler Package
Magic Wand

MAGSAM 11

MAGSAM |V

Ledger/Cybernetics
Ledger/Graham Dorian
Ledger/Peachtree
Ledger/Structured Sys
Ledger |1/CPaids
Accounting System

MAILING ADDRESS Mail List System

*Mail-Merge
Master Tax
MDBS
MDBS-DRS
MDBS-QRS
MDBS-RTL
MDBS-PKG
MDBS

Receivable/Graham Dorian

VERSION LIST
P MR $

(O 1]
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
TRSDOS
C CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
o) TRSDOS
CP/M
.0 CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
0 CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
TRSDOS
CP/M
CP/M
CP/M
3.36A CP/M
TRSDOS
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
TRSDOS
TRSDOS
APPLE
CcP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
TRSDOS
CP/M
CP/M
CP/M
CcP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
Apple

. .
—OMNO

S

[
—_ BN
~N

~ W
-_ T

~nN N

—

=3

.46
.06
.16
.0l

(o>}
H—_——0

.

..
o—==< O~

>,

Quwuwboon NOOOOOO—O—UW—=—00—0ObNOOONOLPOMN NN

—_——N N BN =N =D N —=— D =N —N— BN N—=ON—WN— D W
(o>}

o

1.4

N

1.52

.
QOO0 O0ON—0O——HO
(=]
1
(o3
o
(s3]
S
o

—_————N O — D — N
s o o o N e o
NE T Ow
@
S

1.04D

8080
280
280
780
8080
8080

280

8080
8080
8080
8080
8080
8080
280

8080
280

8080
8080

8080
8080
8080
8080
8080
8080
780

8080
8080
8080
8080
8080
8080
8080
8080
8080
8080
8080
8080
8080
8080
780

64K
48K
52K
48K
64K
48K
48K
56K
32K
24K
52K
48K

48K
48K
64K
40K
48K
32K
32K
60K
24K

32K
48K
48K
32K

48K
48K
48K
64K
48K
48K

8080/280
280

8080
8080
8080

8080

8080
280

8080
8080
8080
8080
8080

8080
8080
8080
8080
8080
8080
8080
8080

280
8080

32K
32K
32K
32K
48K
36K

56K
48K
48K
48K
52K
48K
56K
52K
56K
56K
56K

48K
52K
48K
48K
40K
52K

20K

8080/280

8080
8080
8080
8080
8080
8080

++ 4+ + +

32K
32K
32K
48K

48K
48K
52K
52K
52K
52K
56K

330/15
409/40
299/40
500
805740
840/40
530/60
500
805740
530/60
840/40
80/25
199/20
250/20
500
805740
69/20
175
360735
400/25
335/35
75
200
150/30
630/30
200
129/25
805740
125/20
395740
850/50
650750
150/20
200/20
710735
845/55
695/35
250
350/860
295/30
80
110
110
129/25
99/15
1495750
75
99
149
119720
99
300
435/35
80/25
695/30
500
805740
530/60
840/40
450/30
350/25
300/35
300735
150/5
300/35
175
555740
530/60
840740
805740
585745
335/23
200/25
45
69
120/25
149715
395740
145/25
295/25
530/60
150/25
995730
900/35
300
300
300
1500760
900/35

he below software

is available fromz

{ the authors,computer stores, and !

_} distributors,

-\-m~~~-\---\)

Needs RM/COBOL

Needs CBASIC2

W/IT WORKS run time pkg.
Needs BASIC-80 4.5
Needs RM/COBOL
Needs CBASIC2
Needs BASIC-80
W/IT WORKS run
TRSDOS Macro-80

4.51
time pkg.

Needs CBASIC2,QSORT/VSORT
Needs APL terminal
Needs CBASIC2

TRS-80 Model Il only
W/Vers. 4.51,5.2

W/"C" book

2.17= modified 2.07
Needs no support language

CBASIC needed

Needs 80x24 terminal

Zilog mnemonics

Intel mnemonics,TDL extensions
Needs CBASIC2

|-way TRS-80 Mod |,TRSDOS to

Mod | CP/M

2-way TRS-80 Mod |,TRSDOS & Stnd. CP/M
2-way TRS-80 Mod |,TRSDOS & Mod | CP/M

I-way TRS-80 Mod I|1,TRSDOS to

Needs RM/COBOL

Needs CBASIC2

Needs BASIC-80 4.5

No need for CBASIC

Needs BASIC-80 4.5

Use w/CBASIC2,Selector 111

Runs only w/Radio Shack BASIC
Runs only w/Radio Shack BASIC

Mod Il CP/M

:
5
|

Needs CBASIC2
Needs BASIC-80 4.51
No need for CBASIC
Needs CBASIC2

=

0s
aP
MR
$
.

!
Cassettes ?
{ o

t
g
E
P
C

Has 1980 tax forms

W/al|l above MDBS products

e~

{
{
Lo
able in Z80 or
|
|

Standard Version
Modified Version.
Operating System.
Processor

Memory Required
Price

ndicates a version

r new product.

new

P $ S0 St F P 4 P

hese products are avail-
8080, in
following host lan-
BASCOM, (C0BOL-80, 3
PASCAL/M,
cis-coBoL,
PL/1-80, BASIC-80

he
uages:
ORTRAN-80,
ASCAL/Z,

BASIC,

451, and BASIC-80 S.XX.Z
vt orers

VERSION LIST

PRODUCT NAME S M OS P MR $
Microspel | 4.1 CP/M 8080 48K 249 Needs 150K
Mini-Warehouse Mngmt. Sys. 5.5 CP/M 8080 48K 650 Needs CBASIC
bh e e
MSO §
Mu LISP-80 Compiler 2.03 CP/M 8080 260/30
Mu SIMP / Mu MATH Package 2.03 CP/M 8080 250/25 muMATH 80
NAD Mail List System 3.0C CP/M 8080 48K 115/25
Nevada COBOL 1.403 1.403 CP/M 8080 32K 149/25
Order Entry w/lnventory/Cybernetics CP/M 780 500 Needs RM/COBOL
*PAS-3 Medical Lol CP/M 8080 56K 995/25 Needs 132-col. printer
*PAS-3 Dental .61 CP/M 8080 56K 995/25 Needs 132-col. printer
PASM Assembler 1.02 CP/M 780 129/25
Pascal/M 3.2 CP/M 8080 56K 175/25
PASCAL/MT Compi ler 3.2 CP/M 8080 32K 250/30
PASCAL /MT+ 5l CP/M 8080 52K 250/30 Also has 32K version
*PASCAL/Z Compiler 3e:3 CP/M 8080 56K 395/25
Payroll/Cybernetics, Inc. CP/M 780 500 Needs RM/COBOL
Payroll/Peachtree 11-7-80 CP/M 8080 48K 530/60 Needs BASIC-80 4.5I
Payroll/Structured Sys 1.00 CP/M 8080 60K 840/40 No longer needs CBASIC
PEARL |11 3.01 CP/M 8080 56K 900 W/CBASIC2,Ul trasort |1
PL/1-80 lied CP/M 8080 48K 500
PLINK Linking Loader 3.25 CP/M 780 129725
POSTMASTER Mail List System 3.9 3.3 CP/M 8080 48K 150/20
lF::r'operty Manager 10-10-80 &F”/M 8838 925/90 :eegs ggiéﬁ:(—;eo 4.51
roperty Mngemt. Sys. 1.0 /M 8 48K 650 eeds
QSORT Sort Program 1.5 CP/M 8080 48K 100
Real Estate Acquisition Programs 2.1 CP/M 8080 56K 500 Needs CBASIC
Residential Prop. Mngemt. Sys. 1.0 CP/M 780 48K 650
sr{SOBOL Compiler ‘I‘.;Ca 275 ggm gggg gg!}é 228/25 w/Cybernetics CP/M 2
RECLAIM Disk Verification Program 2.1 CP/M 8080 80
SBASIC 5.3h CP/M 8080 295/35
SELECTOR-111-C2 Data Manager 3.23 3.23 CP/M 8080 48K 295/20
*SELECTOR-|V 2.11 CP/M 8080 52K 550/35 Needs CBASIC
SID Symbolic Debugger 1.4 CP/M 8080 120/25 N/A-Superbr'n
SMAL/80 Programming System 3.0 CP/M 8080 75/25 For CP/M |.x
Standard Tax 1.0 CP/M 8080 48K 495/30 Needs BAS:g-BO 4.5% 5
STATPAK {98 | CP/M 8080 495/30 Needs BASIC-80 4.2 or above
STRING BIT FORTRAN Routines 1.02 1.02 CP/M 8080 75/25
STRING/80 bit FORTRAN Routines I.22 CP/M 8080 95/25
STRING/80 bit Source 1.22 CP/M 8080 295
SUPER SORT | Sort Package 1.5 CP/M 8080 225/40 Max. record=4096 bytes
¥éMA¥ER Dr:a_ta Calculator 1.4 CP/M 8080 48K 125/25 Needs CBASIC2
X Text Formatter be: | CP/M 8080 36K 105715
TEXTWRITER-111 Text Formatter 3.6 3 CP/M 8080 32K 125/20
TINY C Compiler 800102C CP/M 8080 105750
ULTRASORT 11 3. CP/M 8080 48K 195/25
Snlogkl 1.3 CP/M 8080 95 Use w/ BASIC-80
isiCalc |37 Apple 8080 32K 150
VSORT Sort Program 1.8 1.8 CPEM 8080 48K 175/20
tlw&fs:;sg)[zata Manager 2.04 CP/M 8080 44K 175/25
CP/M 8080 48K 195 Needs Wordstar
WORDMASTER Text Editor 1.07A CP/M 8080 40K 145/40
WORDSTAR Word Processor 2.6 2.20A CP/M 8080 48K 445/80
*MAIL MERGE Printer Overlay 2.28 CP/M 8080 48K 575/40
*WORDSTAR Customization Notes 2.2X CP/M 95 Hard Disk Modul
XASM- 18 Cross Assembler 1.30 CP/M 8080 200/25 BRer it o e Veralon
XASM-48 Cross Assemb ler 1.30 Se/M 8080 200/25 #
e ross Assembler . P/M 8080 00/25
XASM-68 Cross Assembler 1.96 CP/M 8080 200/25 c Modul 1.6
*XMACRO-86 Cross Assembler 3.40 CP/M 8080 275/25 KONAN Phoeniy Drive 107
XYBASIC Interpreter Extended 2.1l CP/M 8080 450/25 *Micropolis Microdisk 1.9
XYBASIC Interpreter Extended CP/M 2.11 CP/M 8080 550/25 pe,-tecp I-6
XYBASIC Interpreter Extended COMP 2.0 CP/M 8080 450/25 :
XYBASIC Interpreter Extended ROM 2. CP/M 8080 450/25
XYBASIC Interpreter Integer el CP/M 8080 350/25
XYBASIC Interpreter Integer COMP 2.0 CP/M 8080 350/25
XYBASIC Interpreter Integer ROM T CP/M 8080 350/25
280 Development Package 3.3 CP/M 780 130 N/A-Magnolia, Superbr'n,mod.CP/M
ZDT 780 Debugger I.41 CP/M 780 50 N/A-Superbr'n,mod.CP/M
ZS1D 780 Debugger .4 CP/M 780 130 N/A-Superbr'n,mod.CP/M
i Intel MDS Single Densit 1.4 Sol North Star SD 1.41
Operating Systams _ intel MDS Single Density 2.2 North Star SD IMSAI SI0 Console 1,41
Description Version |ntel MDS 800/230 Double Density 2.2 North Star SD MITS SI0 Console 1.4l
MITS Altair 3202 Disk 1.41 North Star DD 1.45
Micropolis Mod | - All Consoles 1.411 * North Star DD/QD) 2,22
it | LI Micropolis Mod Il - All Consoles |.42 Processor Technology Helios Il 1.41
pple Il w/Microsoft BASIC 2.0 w'Micropolis Mod | 2.20A by Lifeboat/TRS-80 5 1/4"(Mod I) 1.41
Cromemco System 3 8" 1.4« Micropolis Mod 11 2.20A by Lifeboat/TRS-80 Mod || 2.24A
gfonmf°M§)’5tem ‘3 8 22é2 Compal Micropolis Mod Il I.4 by Cybernetics/TRS-80 Mod || 2.25
*Igur:ngolsrg;ys ems 2-2; Black Hawk Micropolis Mod Il | ||Ag by Lifeboat/TRS-80 Mod I|l+Corvus 2.24-C
; ¥ Exidy Sorcerer Micropolis Mod .
ﬂ“:ﬂ/gs ".’(';’7 Disk I.43 Exid); S Mim‘;o.is Mod 11 1,42 OASIS for Altos,Bell Ctrls,Billings,CA
o e b W, ST 143 NYLAC/REX Micropolis Mod Il 1.4 Computer Systems, Compucorp, Cromemco,
I%OMa%g?Zla ea en |2‘2 Vector MZ Micropolis Mod |1 1.411 Delta, Digital Microsys., Dynabyte, God-
1COM 3712 w/AT taiic Consola '2% Versatile 3B Micropolis Mod | 1.411 bout, GRI, Index Comp. Sys., IBC, In-
ICOM 3712 w/IMSA| Console 14 Versatile 4 Micropolis Mod || 1.411 tgrtechni.que. Kontron, Media Sys. Corp.,
ICOM Microfloppy (# 2411) 1741 Horizon North Star SD 1.41 MicromationDoubler, Morrow Thinker Toys,
ICOM 451 1/Pertec D3000 Hard Disk 2'22 Mostek MDX STD Bus 2.2 NNC Elect.,, Onyx, Quay, S.D.Sys.,Teletek,
=gl g * Ohio Scientific C3 2.23 TRS-80 Mod.ll,Vector Gr., Vorimex, Zilog

| FIRST CLASS MAIL
===l . 5. PUSTAGE

PAID
——1 Permit No, 416

FIRST CLASS MAIL

